News

  • 0
  • 0

Water-reducing agent solution for these three

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



The water-reducing agent should be used with concrete admixture, which will reflect the water reduction effect. Cement quality is therefore a direct factor of the effect of water-reducing agent.

Depending on the type of cement encountered, different strategies must be used.

High alkali cement

High-alkali is a cement type with a large amount of alkali. Alkali in high-alkali is usually higher than that of conventional cement.

The high-alkali cements have a high degree of alkalinity. This can impact the performance. High-alkali Cement can encourage the setting reaction, which is beneficial to the early development of strength in concrete. In addition, high alkali cement improves the fluidity and ease of pumping concrete.

But there are also some issues with high-alkali clinkers. As an example, high alkali cements can reduce the efficiency of water-reducing agents and cause concrete to lose its slump faster. High-alkali cement may also lead to corrosion and carbonation problems in the concrete.

High-alkali Cement can benefit from water-reducing agents containing a higher content of sodium sulfate. High-alkali cement contains a high amount of alkali, which accelerates C3A's dissolution. Sodium sulfate reacts with C3A, forming AFt crystals. This can improve the fluidity in cement mortar.

Low-alkali sulfur-deficient cement

Low alkali-sulfur cement is a cement with a lower sulfate level than normal cement. Ordinary cement is high in sulfate. It reacts with water and the sulfate forms crystals that cause cracking.

Reduced sulfate cements reduce the effect of alkali-aggregate reactions (alkali-silica reactions) in concrete. The alkali silica reaction is a reaction between the cement and the aggregate that causes expansion and cracking. The use of low-alkali cements that are sulfur-deficient can help reduce this reaction, and increase the durability and life of the concrete.

Due to the lower sulfate contents, water reducers work less well with low alkali-sulfur cement. Water-reducing agents can cause concrete to lose slump quickly if they are used in excess. In this case, the conventional method of using water-reducing agents may be ineffective. Instead, it is recommended to choose a water reducing agent that contains sulfate.

High C3A cement content

Cement with a high C3A-content is one that contains a large amount of C3A. C3A is a mineral found in cement which reacts with the water to produce an expansive substance when it hydrates. Cements with high C3A contents have a faster setting time and higher early strength. They are ideal for projects that need rapid setting.

Cement with a high C3A percentage can cause some problems. C3A and sulfate react to form sulphoaluminate. This can cause concrete to expand or crack. In humid environments, cements high in C3A are susceptible to producing corrosive calcium-sulfate precipitates, which can have a negative impact on the durability of concrete and steel structures.

Cement with high C3A will have a greater ability to bind water-reducing agents. This will result in a reduction of the fluidity of concrete and its slump. If you are using a water-reducing chemical, choose a water-reducing chemical that has a high sulfate content or a retarder which contains hydroxycarboxylate. These will help reduce C3A adsorption and improve concrete fluidity.

There are two kinds of products that reduce water: the first is a water-reducing naphthalene agent and the second is a water-reducing polycarboxylic agent. The main difference in water reduction is naphthalene. It is high-efficiency, and polycarboxylic is high-performance. For general foam concrete, the naphthalene cubic addition is between a few hundred g to a kilogram.

Inquiry us

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity 3D Printing 304 Stainless Steel Powder

Chromium Sulfide Cr2S3 Powder CAS 12018-22-3, 99.99%

Our Latest Products

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size: 100mesh Purity: 99.99% About Germanium Sulfide (GeS2) Powder: Germanium Sulfide…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have high wear resistance. These products are widely used by the electricity, electronics and energy industries.…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, radiation resistance, thermal and electrical conductivity, and low thermal expansio. It is used widely in the aerospace and medical industries. About Metal…