Trending

Is waterproof cement really waterproof? nanoscience and nanomaterials

Idea and concept of water resistant concrete

Water resistant concrete is a concrete with a details waterproofing representative added. Its primary function is to enhance the thickness and impermeability of cement by altering the microstructure of cement and lowering the number and dimension of capillary pores. Typically, waterproof cement will certainly add waterproof materials such as salt silicate and potassium silicate during the production process. These materials will certainly form a water-insoluble crystal in the hydration reaction, filling up the pores in the cement and making it waterproof.

(TRUNNANO Potassium Silicate Liquid)

Advantages and downsides of waterproof concrete

Benefits

Hassle-free construction: Using water resistant cement resembles that of average cement, and no extra specialist skills are called for.

Low cost: Compared with various other high-end waterproof products, the rate of water-proof cement is more affordable and suitable for large-scale water resistant projects.

Good durability: The water-proof cement layer, after proper building, can maintain its waterproofness for a long period of time and is difficult to age.

Extensively utilized: Suitable for basements, roofing systems, toilets, pool and other scenes.

Downsides

Limitations: Water-proof cement is mainly made use of for mild to modest water seepage problems. For serious water stress and long-term immersion environments, the result might not be like expert water resistant layers.

High construction requirements: Building must be performed strictly in accordance with the instructions or else the expected impact might not be achieved.

High upkeep needs: Once the water resistant layer is harmed, repair work is extra challenging.

TRUNNANO is a supplier of nano materials with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you want to know more about nanoscience and nanomaterials, please feel free to contact us and send an inquiry.

The method and principle of sodium silicate solution removal sodium silicate price

For different kinds of impurities, we can embrace different approaches of removal approaches. Right here are numerous usual approaches and concepts of sodium silicate service.

(TRUNNANO sodium silicate powder)

Rainfall approach

The precipitation technique is a technique that uses contaminations ions to react with particular chemical reagents to produce tough precipitation so regarding eliminate it from the sodium silicate solution. For instance, for steel ions such as iron ions and light weight aluminum ions, alkaline reagents such as sodium hydroxide or potassium hydroxide can be contributed to develop it. The response formula is as complies with:

Fe ⁻ + 3oh f → Fe (OH) ↓

Al ⁻ + 3oh a → Al (oh) ↓

For calcium and magnesium ions, carbonate reagents such as salt carbonate or potassium carbonate can be added to form carbonate rainfall. The response formula is as follows:

CA ₃ ² ⁻ + Carbon monoxide c → CACO ₃ ↓

Mg ₃ ² ⁻ + Co m → mgco ₃ ↓

The rainfall approach is easy and the price is reduced, but you need to focus on the quantity and reaction problems of the debris to make sure that the impurities ions can be totally precipitated.

Ion exchange technique

The ion exchange technique is to uniquely adsorb and exchange the ions in the solution with an ion exchange resin to remove the method of contaminations ions. Ion exchange resin is a polymer product with an ion exchange function. It can trade responses with the ion in the remedy, absorb pollutants ions to the resin, and maintain the beneficial ions in salt ions in salt silicate service in the option.

The ion exchanges are great and can get rid of a selection of impurities ions, but the rate of ion exchange resin is higher, and regrowth is required frequently.

(TRUNNANO sodium silicate powder)

Membrane splitting up

The membrane layer separation technique makes use of the semi-diaphragm to uniquely pass through the different elements in the option so regarding achieve the approach of splitting up and removal. Depending upon the diameter dimension and separation concept of the membrane, the membrane layer splitting up approach can be separated right into numerous types, such as microfiltration, ultrafiltration, purification and reverse osmosis.

For impurities such as insoluble solid granules and macromolecular organic matter in salt silicate solution, mini fillets or ultrafiltration membrane layers can be made use of for getting rid of; contaminations ions of some small molecules can be gotten rid of with the filtration or reverse osmosis membrane layer. The membrane splitting up method has the advantages of easy operation, high splitting up effectiveness, and reduced energy usage.

Supplier

TRUNNANO is a supplier of nano materials with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you want to know more about sodium silicate price, please feel free to contact us and send an inquiry.

Main application areas of nanomaterials silica nano

1. Electronics and infotech

Nanomaterials have become a vital foundation in the field of electronic devices and information technology. As an example, graphene nanomaterials are used to produce lighter, thinner and a lot more effective digital parts. Nanowire and quantum dot innovation brings extra possibilities for future computer systems, screens and optical tools. Furthermore, nanosensors have the benefits of high sensitivity and reduced power intake and have actually been commonly utilized in smart gadgets.

2. Medication and wellness

Another essential application location of nanomaterials is medicine. Nano drug delivery systems can attain targeted therapy and reduce negative effects by loading medications right into nanoparticles. For instance, targeted drugs in cancer cells treatment can act directly on growth cells without influencing typical cells. In addition, nanomaterials are also utilized in medical imaging, genetics therapy and cells design.

(nano material)

Targeted drug distribution: Provide medications to sores accurately via nanocarriers to enhance efficiency and decrease adverse effects.

Nanobiosensors: Utilized to detect condition markers and achieve very early medical diagnosis.

Nanorobots: Nanorobots under study are expected to achieve intricate clinical jobs in the future via autonomous navigating in the body.

3. Environmental management and energy

Nanomaterials additionally show fantastic prospective in the area of environmental management. As an example, nanocatalysts can substantially improve the performance of chain reactions, reduce energy usage and air pollution emissions. In addition, nanomaterials are also utilized in water therapy systems to effectively eliminate heavy steels and unsafe toxins from water.

In the power area, the application of nanomaterials is likewise progressively broadening. As an example, nanostructured electrode products in lithium-ion batteries can boost battery capability and charging speed. Nanomaterials are also made use of in solar batteries, greatly improving the effectiveness of photoelectric conversion.

(nano material)

4. New products field

The physical residential or commercial properties and architectural qualities of nanomaterials make them play a key duty in the r & d of brand-new materials. As an example, carbon nanotubes and graphene materials are being extensively utilized in high-strength, light-weight composite products. These new products have broad application potential customers in the areas of aerospace, vehicle manufacturing and building.

Distributor

TRUNNANO is a supplier of 3D Printing Materials with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you want to know more about silica nano, please feel free to contact us and send an inquiry.

Supplier of Concrete Superplasticizer PCE Powder rdp powder price

(TRUNNANO PCE Powder)

Provider of Concrete Superplasticizer PCE Powder

TRUNNANO is a supplier of Concrete PCE Powder with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you want to know more about rdp powder price, please feel free to contact us and send an inquiry.

Properties and Application of Hafnium Carbide

Hafnium carbide (HfC) is a compound with a specific character and has a wide range of uses.

1. Properties of hafnium carbide

Hafnium carbide is a gray powder that belongs to the category of metal carbides. It has characteristics such as high melting point, good hardness, high thermal stability, and chemical stability.

Physical property

The crystal structure of hafnium carbide is a face-centered cubic structure with a lattice constant of 0.488nm. It has a melting point of up to 3410 , high hardness, and excellent wear and corrosion resistance.

Chemical property

Hafnium carbide has chemical stability and is insoluble in water and acid-base solutions. It is not easily oxidized at high temperatures. Therefore, it has good stability in high-temperature environments. In addition, hafnium carbide also has good radiation resistance and can be applied in fields such as nuclear reactors and particle accelerators.

2. Application of Hafnium Carbide

Due to its high melting point, high hardness, and good thermal and chemical stability, hafnium carbide has been widely used in many fields.

Electronic field

Hafnium carbide has a wide range of applications in the electronic field, mainly as an important component of electronic paste. Electronic paste is a material used for printed circuit boards, and hafnium carbide can improve the adhesion and conductivity of electronic paste. In addition, hafnium carbide can also be used as a sealing material for electronic devices, improving the reliability and stability of electronic devices.

Catalytic field

Hafnium carbide is an excellent catalyst that can be used for catalyzing many chemical reactions. The most widely used one is as a catalyst in automobile exhaust treatment to reduce harmful gas emissions. In addition, hafnium carbide can also be used as a hydrogenation catalyst, denitrification catalyst, etc., and is widely used in hydrogen production, petrochemicals, and other fields.

Optical field

Hafnium carbide has high transparency and can be used to manufacture optical components and fibers. It can improve the transmittance and durability of optical components and reduce light loss. In addition, hafnium carbide can also be used to manufacture key components in optical fields such as lasers and optoelectronic devices.

Ceramic field

Hafnium carbide also be used as an additive in ceramic materials to improve their density and hardness. It can also be used to manufacture high-performance ceramic materials, such as high-temperature ceramics and structural ceramics, improving their performance. In addition, hafnium carbide can also be used as grinding and coating materials.

About RBOSCHCO

RBOSCHCO is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, KMPASS dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for Hafnium carbide, please send an email to: sales1@rboschco.com

What is Lithium stearate powder

Lithium stearate is a crystalline form of lithium.

Lithium stearate has the chemical formula LiSt. It is a white powder that is solid at room temperatures. It is highly lipophilic, and at low concentrations can produce high light transmission. This compound is soluble only slightly in water and is readily soluble when heated to room temperature in organic solvents, such as acetone and ethanol. Lithium Stearate is stable and thermally safe at high temperatures because it has a melting and flash point. The lithium stearate also has good chemical resistance and is resistant to acids and bases, as well as oxidants, reductants and reducing agents. Lithium is less toxic than other metals, but should still be handled with care. An excessive intake of lithium can lead to diarrhoea or vomiting as well as difficulty breathing. Wearing gloves and goggles during operation is recommended because prolonged exposure to lithium can cause eye and skin irritation.

Lithium stearate:

Surfactant: Lithium Stearate Surfactant, lubricant, and other ingredients are used to make personal care products, such as shampoos, soaps, body washes, and cosmetics. It has excellent foam properties and good hydrolysis stabilty, resulting in a gentle and clean washing experience.

Lithium stearate has an important role to play in polymer syntheses. It can be used both as a donor and a participant in the formation of polymer chains. These polymers have good mechanical and chemical properties, making them ideal for plastics, rubber fibers, etc.

Lithium stearate can be used in cosmetic formulations to soften and moisturize the skin. It enhances moisturization, and makes the skin softer and smoother. The antibacterial and antiinflammatory properties of lithium stearate can also help with skin problems.

Paints & Coatings: Lithium is stearate can be used to thicken and level paints & coatings. It helps control the flow a coating and its properties. It is resistant to weather and scratches, which makes the coating durable.

Applications of lithium stearate include drug carriers, excipients, and stabilizers. It can enhance the taste and solubility and stability of medications.

Agriculture: Lithium isostearate may be used to carry fertilizers and as a plant-protection agent. It increases the efficiency of fertilizers and improves plant disease resistance.

Petrochemicals: In the petrochemicals, lithium stearate acts as a lubricant or release agent. As a catalyst in petroleum cracking, lithium stearate improves cracking yield and efficiency.

Lithium Stearate Production Process :

Chemical Synthesis:

Lithium stearate can be synthesized through a series a chemical reactions. In order to get the two reacting fully, lithium metal is heated and stearate root is stirred together in an organic solvant. After washing and drying, the pure lithium-stearate product is obtained.

Following are the steps for synthesis.

(1) Lithium metal and stearate in organic solvents, such as ethanol heated stirring to fully react.

(2) The reaction solution must be cooled in order to precipitate lithium stearate.

(3) Wash the crystal with water and remove any lithium stearate particles.

(4) The dried crystals will be used to make lithium stearate.

The benefits of chemical synthesis include a matured process, high production efficiency, and high product quality. However, organic solvents have an environmental impact and waste is generated during production.

Methode de fermentation biologique

In biological fermentation, microorganisms such as yeast are used in the medium to produce lithium. The principle behind this method is that microorganisms use their metabolic pathways to produce stearic and react with metal ions, such as lithium, to create lithium stearate.

These are the steps that you will need to take in order to produce your product.

(1) The microorganisms will be inoculated onto the medium that contains precursor substances for fermentation cultures;

(2) The filtrate is used to produce a solution of stearic acetic acid.

Add metals (such as the lithium ions) into the solution with stearic to ensure that they fully react.

(4) The reaction product is separated and washed, then dried to give lithium stearate.

The benefits of biological fermentation include environmental protection, less waste discharge and a longer production process. However, the conditions for production are also higher.

Prospect Market of Lithium Stearate:

The application of lithium in personal care will continue to be important. It plays an important part in cosmetics, soaps, and shampoos as it is a surfactant. As people's standards of living improve and the cosmetics sector continues to expand, lithium stearate demand will gradually rise.

Second, the use of lithium stearate for polymer synthesis has also increased. It can be used both as a donor and a participant in polymer chain formation. As polymer materials science continues to develop, the demand of lithium stearate increases.

Lithium stearate's application in agricultural, petrochemical, pharmaceutical and other fields is also growing. In the pharmaceutical sector, lithium stearate may be used as a carrier, excipient or drug stabilizer. In agriculture, the lithium stearate is used to protect plants and as a carrier for fertilizer. In the field of petrochemistry, lithium isostearate may be used as an lubricant or release agent. In these areas, the demand for lithium will increase as technology advances.

But the outlook for the lithium stearate market is not without its own challenges. In order to produce lithium metal, it is necessary to use a more expensive production process. Aside from that, the applications of lithium is limited, with a concentration in agriculture, pharmaceuticals and petrochemicals. To expand the scope of application and the demand for lithium stearate, it is important to continue to develop new applications and markets.

Lithium stearate powder price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you're looking for the most recent lithium stearate price.

Supplier of Lithium stearate powder

Technology Co. Ltd. has been supplying high-quality chemical materials for over 12 years.

The chemical and nanomaterials include silicon powders, graphite particles, zinc sulfide grains, boron particles, 3D printer powders, etc.

Contact us today to receive a quote for our high-quality Lithium Stearate Powder.

More than a hundred schools in the UK have been closed due to the risk of collapse

In the UK, more than 100 schools were closed because of the danger of collapse

In the UK, many schools use Autoclaved aerated cement (RAAC). This is a concrete material that is lighter.

In 2018, the roof of a school in southeast England collapsed. It was later discovered that RAAC had been used for the roof as well as the buildings. This raised safety concerns.

BBC reported that RAAC materials were widely used from the 1950s until the mid-1990s in areas such as roof panels, and had a lifespan of around 30 years.

According to reports, the risk of building collapse is not limited only to schools, but also courts, hospitals and police stations. RAAC material has been found.

The Royal Dengate Theatre at Northampton is temporarily closed after RAAC material was found.

According to NHS, RAAC has been detected in 27 hospital building.

The NHS chief has been asked for measures to be taken to prevent collapse.

BBC reported that since 2018 the British government has warned schools to be "fully ready" in case RAAC is found within public buildings.

The Independent reported Jonathan Slater a former senior education official, who said that Sunak, Prime Minister in 2021, approved budget reductions to build schools.

Nick Gibb is a senior official at the Department of Education. He said that the Department of Education asked for PS200m annually for school maintenance. Sunak, then the chancellor, only provided PS50 million per year.

The report also states that despite Sunak having promised to renovate at least 50 schools every year, in the main reconstruction plan of the government only four schools were renovated.

The British National Audit Office chief also condemned the crisis. Sunak's government, he said, had adopted a "plaster-method" of building maintenance.

He believes the government's underinvestment has forced schools to close, and that families are now "paying the cost".

Paul Whitman is the secretary-general of National Association of Principals. He said that the public and parents would perceive any attempt to blame individual schools on the government as "a desperate move by the federal government to divert its attention from their own major errors."

Whitman claimed that the classroom has become completely unusable. Whitman blamed the British Government for the situation. "No matter what you do to divert or distract, it won't work."

London Mayor Sadiq khan said that the government should be open and transparent. This will reassure parents, staff, children, and others.

BBC reported schools in the UK were pushing forward with inspections and assessments. Children who had been suspended because of school building issues will be temporarily housed, or they can learn online.

Applications of Nickel-based Alloy Rod

Nickel alloy rod contains many other elements including iron, chrome, and molybdenum. Nickel-based alloys are more resistant to corrosion and stable at high temperatures than conventional iron alloys. This makes them popular in many industrial and engineering applications.

Petrochemical Industry

Nickel-based rods are used widely in the petrochemical industries. In petroleum cracking, nickel-based rods are used for reactor manufacturing. They can withstand high pressure and temperature conditions and offer good corrosion resistance. Nickel-based rods can also be used for manufacturing equipment like pipelines and containers during petrochemical processes.

In the petrochemical industries, nickel-based rods are used primarily to manufacture high temperature and high pressure reactors. They can also be used for heat exchangers and towers. It is essential to select materials that have high strength, corrosion-resistance, and stability at high temperatures. This is because they are required to be used in environments with high temperature, high pressure, or corrosive media. Nickel-based rods are a material that has excellent properties, and is used to manufacture petrochemical machinery.

Nuclear Industry

The nuclear industry can use nickel-based alloys rods as reactor manufacturing materials. These rods are highly stable at high temperatures and resist corrosion. The nickel-based rods, with their excellent high-temperature stability and corrosion resistance, can be used as structural materials or shells for nuclear fuel component components.

Nickel-based alloys rods are used primarily in nuclear reactors as materials to manufacture fuel components. These components have to be able work in environments with high temperature, high pressure, and radioactivity. These components must be highly resistant to corrosion and high temperature. Nickel-based rods are a material that has these properties, and is therefore a preferred choice for the manufacture of nuclear fuel elements.

Aerospace field

Nickel-based alloys rods are used primarily in aerospace to make key components such as aviation engines and rocket motors. Nickel-based materials are used in aerospace because of their high-temperature resistance and excellent stability.

In aviation engines nickel-based alloys rods are used primarily as a manufacturing material for turbine blades and guides vanes. These components have to be able to withstand high pressure, high temperatures and high speeds. These components must have excellent high temperature strength, creep resistance and corrosion resistance. These properties make nickel-based alloys rods a preferred material for aircraft engine manufacturing.

Automotive Manufacturing sector

Nickel-based alloys rods can be used in the manufacture of high-performance automobile components. Nickel-based rods are used in the manufacture of high-performance automotive components, such as engine cylinder blocks or cylinder heads.

Nickel-based rods are mainly used in the automotive industry to make key engine components, such as cylinders, pistons, and cylinder heads. Materials with high strength and high temperature stability are needed for these components to function in environments of high temperature, pressure, and corrosion. Nickel-based alloys rods possess these properties, and are therefore one of automotive engine manufacturers' preferred materials.

Medical device field

Medical devices can benefit from the biocompatibility of nickel-based alloys and their corrosion resistance. This ensures safety and reliability.

Medical devices is a broad field that includes a variety of medical devices including surgical instruments, implant, diagnostic equipment, rehabilitation materials, etc. Nickel-based rods are mainly the raw material for high-precision, high-quality medical equipment. In surgical instruments, for example, surgical knives and forceps that are made from nickel-based metal rods provide excellent durability and cutting performance. Orthopedic and cardiovascular implants made with nickel-based rods are biocompatible and have excellent mechanical properties. They can treat various orthopedic or cardiovascular diseases.

Other fields

Nickel-based alloys rods are not only used in electronics and construction but also power, building, and other fields. Nickel-based rods are used in power transmission and structural support for high-rise building. They can also provide outstanding strength and durability. Nickel-based rods can be used to make key components in the electronics sector, such as circuit boards and materials for electromagnetic shielding.

About KMPASS

KMPASS is a global supplier and manufacturer of high-quality nanomaterials, chemicals, and other materials. We have over 12 year experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leader of nanotechnology manufacturing, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email to sales2@nanotrun.com if you are interested in Inconel 718 Powder.

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size: 100mesh
Purity: 99.99%

About Germanium Sulfide (GeS2) Powder:
Germanium Sulfide also known as Germanium Sulphide and Germanium Disulfide. GeS2 is the formula of germanium disulfide. It is unstable, easy to sublimate and oxidize, and dissociates in humid air, or an inert atmosphere. Inorganic acids (including strong acids) and water are insoluble.
Germanium disulfide is 2.19g/cm3. Germanium Sulfide is small, white powder that consists mainly of Germanium disulfide(GeS2) particle. Germanium disulfide, like many other metal sulfides that are closely related, is the subject of many researches who are researching its potential for energy storage applications such as solid state batteries.
The germanium diulfide crystal has an orthogonal structure. Each cell contains 24 molecules with the following dimensions: A = 11.66a; B = 22.34A; C = 6.86A. Accuracy of 1/2%. The space group (C2V19) is FDD. Eight germanium-atoms are arranged on a dual-axis. All other atoms are arranged in a general arrangement. These 12 parameters were determined. Each germanium is connected with four atomic tetrahedrons of sulfur, at an atomic separation of 2.19A. The angle of the two sulfur bonds between them is 103 degrees.

If you're interested in purchasing Germanium Sulfide (GeS2) Powder , please send us an inquiry.

High Purity Germanium Sulfide Granule Powder:

Nature: white powder Crystal structure is orthogonal. Density is 2.19 grams per cm3. Melting point 800 . Unstable high-temperature sublimation or oxidation. In humid air or an inert atmosphere, dissociation. The molten state has a fresh, brown, transparent body with a 3.01g/cm3 density. It is not soluble in water or inorganic acids, including strong acid, but it is soluble in hot alkali. By the sulfur vapor and germanium powder from the system. For intermediate germanium products.

germanium sulfide CAS number 12025-34-2
germanium Sulfide Molecular Formula GeS2
germanium sulfide Molar mass 136.77g mol-1
germanium sulfide Appearance White crystals with a translucent appearance
germanium sulfide Density 2.94 g cm-3
germanium sulfide Melting point 840 degC (1,540 degF; 1,110 K)
germanium Sulfide Boiling Point 1,530 degC (2,790 degF; 1,800 K)
Germanium sulfide Insoluble in Water 0.45 g/100mL
germanium sulfide Solubility soluble in liquid ammonia

What is Germanium Sulfide GeS2 Powder produced?
Germanium disulfide may be produced by converting hydrogen sulfide into tetrachloride using a hydrochloric solution.
Germanium disulfide can be prepared by combining germanium with sulfide gas or hydrogen sulfur, and a mix of gases of sulfur.

Applications Germanium Sulfide GeS2 Powder:
Solid-State Batteries: Germanium disulfide, like many compounds closely related, is of particular interest to researchers and manufacturers.
This material can be used to produce cathodes in certain types batteries.
The vulcanized microparticles have great potential to be used as high-performance batteries containing lithium-sulfur.
Electrology: For researchers working on energy storage technology Germanium disulfide is a material that has similar characteristics. It can be used to produce other components and materials in electronic technology.
Catalysts: Germanium disulfide, like many other sulfides has the unique ability to produce more complex chemicals for high-tech devices and other chemical reactions.
As with many materials related to nano-level sulfur, it has many unique optical properties. However, these properties are still not well understood.
This makes the research interest in this material involve a wide range of industries and fields, from electron-to-photovoltaic to imaging techniques.

Germanium Sulfide (GeS2) Powder Storage Condition:
Germanium Sulfide GeS2 is affected by damp reunion, which will have an adverse effect on the powder's dispersion and use. Therefore, it should be packed in vacuum and kept in a dry and cool room. GeS2 powder must also not be exposed to stress.

Packing & Shipping Germanium sulfide powder GeS2
The amount of Germanium Sulfide powder GeS2 will determine the type of packaging.
Germanium Sulfide powder packaging: Vacuum packed, 100g to 500g per bag, 1kg per barrel, or your choice.
Germanium Sulfide Powder Shipping: Can be shipped via air, sea or express.


Technology Co. Ltd., () is an established global chemical material manufacturer and supplier with more than a decade of experience. They provide high-quality nanomaterials such as boride powders, graphite or nitride particles, 3D printing powders, sulfide particles, etc.
Looking for high quality Germanium disulfide powder Send us a message or feel free contact us. ( brad@ihpa.net )

Germanium Sulfide Properties

Alternative Names germanium(IV) sulfide, germanium disulfide,
germanium disulphide, GeS2 powder
CAS Number 12025-34-2
Compound Formula GeS2
Molecular Mass 136.77
Appearance White Powder
Melting Point 800
Boiling Point 1530
Density 2.94 g/cm3
Solubility In H2O 0.45 g/100mL
Exact Volume 137.86532

Germanium Sulfide Health & Safety Information

Sign Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
Transport Information N/A

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have high wear resistance. These products are widely used by the electricity, electronics and energy industries.

Metal Alloy High Purity Copper Plate, 8.92g/cm3,
Surface:
Brush, mirror, hairline, sandblast, mill, oiled.

Dimension:


Applications:
Interior decoration: ceilings, walls, furniture, cabinets, and elevator decoraction.

Payment & Transport:

Metal alloy 8.92g/cm3 high purity polished copper plate properties

Alternative Names Copper Plate
CAS Number N/A
Compound Formula Curiosity
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 8.92g/cm3
Purity 99.95%, 99.99%, 99.995%
Size
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young’s Module N/A
Exact Mass N/A
Monoisotopic Mash N/A

Health & Safety Information for Metal Alloy 8.92g/cm3 High Purity Polised Copper Plate

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, radiation resistance, thermal and electrical conductivity, and low thermal expansio. It is used widely in the aerospace and medical industries.

About Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate:
Powder metallurgy produces compact ingots from high purity tungsten. After powder metallurgy, a series further deformations are made and heat treatments are applied until the final products have been produced.

Properties:
High thermal conductivity and thermal conductivity, low thermal expansion. Perfect performance in environments with high radiation exposure.

Applications:
Used for manufacturing machining tools such as lathes and dices.



We have a wide range of sizes and grades in tungsten-alloy plates. Contact us for any of your needs.


Payment & Transport:

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate Properties

Alternative Names Tungsten Alloy Plate
CAS Number N/A
Compound Formula N/A
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 18.5g/cm3
Purity 99.95%
Size
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young Modulus N/A
Exact-Mass N/A
Monoisotopic Mash N/A

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate Health & Safety Information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Tungsten-nickel-copper/iron alloy is characterized by low thermal expansion, high density, radiation absorption and high thermal and electrical conductivity. It is widely utilized in the aerospace and medical industries.

About High Density Tungsten Aloy Rod Grinding Surface:
Tungsten-alloy rods are made mostly from tungsten alloyed with nickel, iron, or copper.

Properties:
Low thermal expansion and high density, with high thermal conductivity and electrical conductivity. Perfect performance in environments of high radiation exposure.

Applications:
The aerospace, military and medical industries use this material extensively.


Payment & Transport:

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar Properties

Alternative Names Tungsten Alloy Bar
CAS Number N/A
Compound Formula N/A
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 17g/cm3
Purity N/A
Size You can customize the look of your website by using
Bolding Point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young’s Module N/A
Exact Number N/A
Monoisotopic Mash N/A

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar Health & Safety Information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity 3D Printing 304 Stainless Steel Powder

Chromium Sulfide Cr2S3 Powder CAS 12018-22-3, 99.99%

Newsjatujakguide is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsjatujakguide.